EPOXIDATION OF FOUR POSSIBLE CONFORMERS OF HUMULENE 9,10-EPOXIDE: FIRST ISOLATION OF 2R, 3R, 6S, 7S, 9S, 10S-HUMULENE 2,3;6,7;9,10-TRIEPOXIDE

Author(s)
HAYANO, Kiyoharu; ITO, Nobue; SATO, Makoto; TAKISHIMA, Masayuki; MOCHIZUKI, Katsura

Citation
Heterocycles, 48(9): 1747-1752

Issue Date
1998

URL
http://s-ir.sap.hokkyodai.ac.jp/dspace/handle/123456789/1782

Rights
日本複素環化学研究所
EPOXIDATION OF FOUR POSSIBLE CONFORMERS OF HUMULENE 9,10-EPOXIDE: FIRST ISOLATION OF 2R*, 3R*, 6S*, 7S*, 9S*, 10S*-HUMULENE 2,3;6,7;9,10-TRIEPOXIDE

Kiyoharu Hayano*, Nobue Ito, Makoto Sato, Masayuki Takishima†, and Katsura Mochizuki‡

Chemistry Laboratory, Hokkaido College of Education, Ainosato, Sapporo 002-8502, Japan, †Department of Chemistry, Yokohama City University, Kanazawa-ku, Yokohama, 236-0027, Japan

Abstract-The complete reaction of humulene 9,10-epoxide {((2E, 6E)-9,10-epoxy-3,7,11,11-tetramethylcycloundeca-2,6-diene, (1)) with m-CPBA produced a hitherto unknown 2R*, 3R*, 6S*, 7S*, 9S*, 10S*-humulene 2,3;6,7;9,10-triepoxide (6) together with three known humulene triepoxides (7, 8 and 9), in the ratio of 6 : 7 : 8 : 9 = 1.3 : 11.5 : 22.6 : 64.6. The configuration of 6 was determined by X-Ray crystallography (C15H24O3: space group P21/n with a = 14.147(4) Å, b = 8.419(3) Å, c = 12.238(4) Å, β = 102.10(3°), Z = 4). The new triepoxide (6) maintained configuration corresponding to the IT conformer, one of the four possible conformers of 1.

It has been considered that four configurations, (2R*,3R*,6S*,7S*,9S*,10S*)-, (2R*,3R*,6R*,7R*,9S*,10S*)-, (2S*,3S*,6S*,7S*,9S*,10S*)- and (2S*,3S*,6R*,7R*,9S*,10S*)-humulene 2,3;6,7;9,10-triepoxides (6, 7, 8 and 9), are derived from (2E,6E)-humulene 9,10-epoxide (1) by complete epoxidation of 2,3- and 6,7-double bonds via (2E)-humulene 6,7;9,10- and (6E)-humulene 2,3;9,10-diepoxides (2, 3, 4 and 5), because 1 can take four conformations, TC, CC, CT and TT due to the rotation of the 2,3- and 6,7-double bond planes1 as shown in Scheme 1. Indeed, we have previously described2,3 the existence of the three triepoxides (7, 8 and 9), the configurations of which correspond to the TC, CC and CT conformations, respectively, in the epoxidation reaction of another epoxide, (6E, 9E)-humulene 2,3-epoxide, but the last triepoxide (6) derived from the TT conformation, has not been detected and isolated until this work. The TT conformation itself and/or configuration originated from the TT conformation has neither been experimentally isolated nor confirmed in the case of following compounds; humulene,4 humulene mono-, di- and triepoxides,5 transannular cyclized compounds6 of humulene and the monoepoxides, and cyclohumulanoids.7 In the present study, we first isolated the new 2R*, 3R*, 6S*, 7S*, 9S*, 10S*-humulene 2,3;6,7;9,10-triepoxide (6) corresponding to the TT conformation as a minor product together with the three known triepoxides (7, 8, and 9),3 from the complete epoxidation of 1 with m-chloroperbenzoic acid (m-CPBA). The triepoxide (6) was separated by HPLC and isolated as a
single crystal, and its configuration was first determined by X-Ray crystallography.

Scheme 1. Four possible conformations of 1 and epoxidation products of 1. C and T denote crossed and parallel arrangement of 6,7- and 9,10-bonds against 2,3-bond, respectively. For example, first T and second T in TT represent parallel and parallel that of 9,10- and 2,3-bonds, and 6,7- and 2,3-bonds, respectively.

Epoxidation\(^8\) of one double bond in humulene 9,10-epoxide (1) with \(m\)-CPBA (1 eq) in dry dichloromethane (CH\(_2\)Cl\(_2\)) at 0 °C under an argon atmosphere and then chromatographic separation (SiO\(_2\), EtOAc / hexane = 1 / 9) gave an oily mixture (97%) of 2, 3, 4 and 5 \((2+3) : (4+5) = 59 : 41\); the ratio was calculated from the HPLC peak areas, Scheme 1), which was separated into an oily mixture (48.4 % from 1) of two 6,7;9,10-diepoxides (2+3) and a crystalline mixture (33.6 % from 1) of two 2,3;9,10-diepoxides (4+5) by HPLC using a 10 x 244 mm column of RP-18 (7 μm, Merck, H\(_2\)O / EtOH = 3 / 7). Furthermore, separation of the two mixtures (2 : 3 = 69 : 31 and 4 : 5 = 85 : 15; the ratios were calculated from the HPLC peak areas) by HPLC using two 10 x 250 mm columns of Inertsil SIL 100-5 (GL Sciences, Inc., EtOAc / hexane = 1 / 9) gave 2 (30.7 % from 1)\(^9\), 3 (14.4 % from 1)\(^9\), 4 (26.3 % from 1)\(^9\) and 5 (4.6 % from 1).\(^9\) Although the HRMS of 2 and 3 showed the same molecular formula, C\(_{15}\)H\(_{24}\)O\(_2\), and their COSY (H-H and C-H) spectra revealed the existence of the same partial structures (Figure 1), the \(^1\)H and \(^13\)C NMR spectra of 2 and 3 were different. From the results of the NOESY spectrum of 2, conformation of 2 was shown to be CT, and therefore, the CC or TT conformation\(^10\) was deduced for 3. The di-epoxides (4 and 5) differed from 2 and 3 in the \(^1\)H and \(^13\)C NMR spectra,\(^5\) but the HRMS of the diepoxides (4 and 5) also showed the same molecular formula, C\(_{15}\)H\(_{24}\)O\(_2\), as that of 2 and 3. Moreover, because the partial structures of 4 revealed by COSY (H-H and C-H) spectra were the same as those of 5 (Figure 2), 4 was thought to be a stereoisomer of 5. From the above results and the results (Figure 2) of the NOESY spectrum of 5, the structure and conformation of 5 were derived to be TC as depicted in Figure 2, and therefore, the CT or CC conformation\(^10\) was suggested for 4.
The epoxidation of the residual double bond in the above pure diepoxides (2, 3, 4 and 5) with \textit{m}-CPBA (1 eq) in CH$_2$Cl$_2$ at 0 °C under an argon atmosphere, followed by chromatographic separation (SiO$_2$, EtOAc / hexane = 3 / 17) yielded quantitatively a triepoxide mixture of 7 and 9 (7 : 9 = 14 : 86), 6 and 8 (6 : 8 = 5 : 95), 8 and 9 (8 : 9 = 15 : 85) and 6 and 7 (6 : 7 = 6 : 94) (Scheme 1). The ratio of these mixtures was calculated from the HPLC peak areas using two 10 x 250 mm columns of Inertil SIL 100-5 (GL Sciences, Inc., EtOAc / hexane = 1 / 3). Fractional crystallization of the mixture of 6 and 8, and 6 and 7 from benzene, combined with HPLC separation of these filtrates, produced 6 (4.7 % from 3) and 8 (93.8 % from 3), and 6 (4.8 % from 5) and 7 (90.5 % from 5). Fractional crystallization of the mixture of 7 and 9, and 8 and 9 from hexane, followed by HPLC separation of these filtrates, gave 7 (11.1 % from 2) and 9 (77.8 % from 2), and 8 (14.5 % from 4) and 9 (81.1 % from 4). 13C and 1H NMR spectra of 7, 8 and 9 were superimposable on those of known 2R, 3R, 6S, 7S, 9S, 10S-humulene 2,3,6,7,9,10-triepoxides, and therefore, these configurations were depicted as 7, 8 and 9 in Scheme 1. Although the HRMS of 6 showed the same molecular formula, C$_{15}$H$_{24}$O$_3$, as those of 7, 8 and 9, the triepoxide (6) differed from 7, 8 and 9 in these 13C and 1H NMR spectra. In order to determine the configuration of 6, a single crystal of 6 was supplied for X-Ray crystallography, which revealed its configuration, 2R, 3R, 6S, 7S, 9S, 10S-humulene 2,3,6,7,9,10-triepoxide, as depicted in Figure 3. Consequently, the complete epoxidation of 1 with \textit{m}-CPBA (2 eq) gave a mixture (97 % yield) of 6, 7, 8 and 9 in the ratio of 6 : 7 : 8 : 9 = 1.3 : 11.5 : 22.6 : 64.6.

Thus, the new triepoxide (6) maintained the configuration, 2R, 3R, 6S, 7S, 9S, 10S, originated
from the TT conformation, one of the four possible conformations of 1. It was shown experimentally that the triepoxide (6) was produced as a minor product via the TT conformer of 3 and 5 from 1 in the complete epoxidation reaction.

REFERENCES AND NOTES

8. It is possible that the epoxidation reaction of 1 gives the triepoxides as a minor product.

9. 2: oil; *1H NMR* (CDCl$_3$, 400 MHz), δ 0.64 (1H, dd, $J=10.3, 12.9$ Hz, 8βH), 0.78, 1.10, 1.39, 1.69 (each 3H, s), 1.35 (1H, m, 5H), 1.96 (1H, br d, $J=14.9$ Hz, 1αH), 2.16 (1H, dd, $J=7.3, 13.3$ Hz, 4αH), 2.22 (1H, d, $J=3$ Hz, 10H), 2.24 (1H, dd, $J=10.6, 14.9$ Hz, 1βH), 2.26 (1H, m, 4βH), 2.30 (1H, m, 5H), 2.48 (1H, dd, $J=4.6, 10.3$ Hz, 6H), 2.68 (1H, dd, $J=3, 12.9$ Hz, 8αH), 2.80 (1H, dt, $J=3, 10.3$ Hz, 9H), 5.2 (1H, br d, $J=10.6$ Hz, 2H) ppm; *13C NMR* (CDCl$_3$, 400 MHz) δ 15.2 (q, 3Me), 17.3 (q), 19.3 (q), 24.8 (t, 5C), 28.5 (q), 34.1 (s, 11C), 36.2 (t, 4C), 39.1 (t, 1C), 43.6 (t, 8C), 53.0 (d, 9C), 57.8 (s, 7C), 61.7 (d, 6C), 66.1 (d, 10C), 122.8 (d, 2C), 133.7 (c, 3C) ppm; HRMS (EI): m/z 236.1752 (M$^+$, C$_{15}$H$_{24}$O$_2$ requires 236.1777).

3: mp 69-71 °C; *1H NMR* (CDCl$_3$, 400 MHz), δ 0.77, 1.13, 1.20 (each 3H, s), 1.44(1H, dddd, $J=2.4, 7.2, 10.0, 14.5$ Hz, 5H), 1.54 (1H, dd, $J=8.3, 13.7$ Hz, 8H), 1.61 (3H, br s, 3Me), 1.92 (1H, br d, $J=15$ Hz, 1H), 2.00 (1H, dddd, $J=3.7, 7.2, 14.5$ Hz, 5H), 2.16 (1H, dd, $J=5.5, 13.7$ Hz, 8H), 2.22 (2H, dddd, $J=3.7, 7.0, 7.2, 9.7, 10.0$ Hz, 4H$_2$), 2.39 (1H, dd, $J=11.0, 15.0$ Hz, 1H), 2.48 (1H, d, $J=2.7$ Hz, 10H), 2.80 (1H, d, $J=2.4$ Hz, 6H), 2.82 (1H, ddd, $J=2.7, 5.5, 8.3$ Hz, 9H), 5.15 (1H, br d, $J=11$ Hz, 2H) ppm; *13C NMR* (CDCl$_3$, 270 MHz) δ 16.1 (q, 3Me), 18.0 (q), 20.3 (q), 25.0 (t, 5C), 29.5 (q), 34.4 (s, 11C), 36.6 (t, 4C), 38.8 (t, 1C), 41.9 (t, 8C), 51.7 (d, 9C), 58.6 (s, 7C), 61.4 (d, 6C), 63.2 (d, 10C), 122.9 (d, 2C), 133.7 (s, 3C) ppm; HRMS (EI): m/z 236.1752 (M$^+$, C$_{15}$H$_{24}$O$_2$ requires 236.1777).

4: mp 66-69 °C; *1H NMR* (CDCl$_3$, 270 MHz), δ 0.84, 1.09, 1.25, 1.71 (each 3H, s), 1.15 (1H, dd, $J=14.0, 115.0$ Hz, 4βH), 1.57 (1H, dd, $J=7.6, 15.2$ Hz, 1βH), 1.63 (1H, dd, $J=9.9, 12.9$ Hz, 8βH), 1.68 (1H, dd, $J=1.3, 15.2$ Hz, 1αH), 2.07 (1H, dddd, $J=5.2, 7.9, 13.6$ Hz, 5βH), 2.12 (1H, dddd, $J=1.8, 5.2, 15.0$ Hz, 4αH), 2.30 (1H, dddd, $J=1.8, 7.9, 13.6, 14.0$ Hz, 5αH), 2.36 (1H, d, $J=2.3$ Hz, 10H), 2.58 (1H, dd, $J=1.3, 7.6$ Hz, 2H), 2.68 (1H, dd, $J=3.6, 12.9$ Hz, 8αH), 3.01 (1H, dddd, $J=2.3, 3.6, 9.9$ Hz, 9H), 5.28 (1H, t, $J=7.9$ Hz, 6H) ppm; *13C NMR* (CDCl$_3$, 270 MHz) δ 16.4 (q), 17.79 (q), 18.2 (q), 23.4 (t, 5C), 29.0 (q), 33.2 (s), 38.3 (t, 4C), 38.7 (t, 1C), 41.5 (t, 8C), 56.5 (d, 9C), 61.0 (s), 61.6 (d, 2C), 65.4 (d, 10C), 125.5 (d, 6C), 132.6 (s, 7C) ppm; HRMS
1752 HETEROCYCLES, Vol. 48, No. 9, 1998

(El): m/z 236.1766 (M+, C15H24O2 requires 236.1777).
5: mp 85-87 ºC; 1H NMR (CDCl3, 270 MHz, δ 0.71, 1.14, 1.30, 1.77 (each 3H, s), 1.18 (1H, dd, J=4.7, 12.8 Hz, 4βH), 1.49 (1H, dd, J=5.2, 15.8 Hz, 1αH), 1.53 (1H, dd, J=3.0, 15.8 Hz, 1βH), 1.63 (1H, dd, J=9.9, 12.0 Hz, 8βH), 2.12 (1H, dd, J=3.3, 12.8 Hz, 5βH), 2.17 (1H, dt, J=12.8, 3.3 Hz, 4αH), 2.32 (1H, ddd, J=3.3, 4.7, 11.9, 12.8 Hz, 5αH), 2.66 (1H, dd, J=3.3, 12.0 Hz, 8αH), 2.67 (1H, d, J=2.7 Hz, 10H), 2.79 (1H, dd, J=3.0, 5.2 Hz, 2H), 2.90 (1H, ddd, J=2.7, 3.3, 9.9 Hz, 9H), 5.10 (1H, br d, J=11.9 Hz, 6H) ppm; 13C NMR (CDCl3, 270 MHz) δ 17.0 (q), 17.7 (q, 7Me), 22.9 (q), 24.6 (t, 5C), 26.8 (q), 32.5 (s, 11C), 40.9 (t, 1C), 43.3 (t, 8C), 54.8 (d, 9C), 60.2 (s, 3C), 60.4 (d, 2C), 64.7 (d, 10C), 127.9 (d, 6C), 131.2 (s, 7C) ppm; HRMS (El): m/z 236.1781 (M+, C15H24O2 requires 236.1777).

10. The preliminary X-Ray crystallography suggested that 3 and 4 held the CC and CT conformations in the crystalline state, respectively.

11.6: mp 147-149 ºC; 1H NMR (CDCl3, 400 MHz) δ 0.72, 1.15, 1.32, 1.35 (each 3H, s), 1.37 (1H, m, 5H), 1.43 (1H, dd, J=11.0, 14.2 Hz, 1H), 1.49 (1H, dd, J=9.6, 14.0 Hz, 8H), 1.83 (1H, m, 5H), 1.85 (1H, m, 4H), 2.01 (1H, m, 4H), 2.07 (1H, dd, J=3.1, 14.2 Hz, 1H), 2.35 (1H, dd, J=4.3, 14.0 Hz, 8H), 2.72 (1H, dd, J=2.5 Hz, 10H), 2.77 (1H, ddd, J=2.5, 4.3, 9.6 Hz, 9H), 2.92 (1H, ddd, J=3.1, 11.0 Hz, 2H), 2.94 (1H, m, 6H) ppm; 13C NMR (CDCl3, 400 MHz) δ 18.3 (q), 20.2 (q), 20.9 (q), 21.0 (t, 5C), 28.3 (q), 32.7 (s, 11C), 34.3 (t, 4C), 38.5 (t, 8C), 39.9 (t, 1C), 53.2 (d, 9C), 58.8 (s), 59.2 (d, 2 or 6C), 60.1 (s), 61.7 (d, 6 or 2C), 63.8 (d, 10C) ppm; HRMS (El): m/z 252.1722 (M+, C15H24O3 requires 252.1726). Anal. Calcd for C15H24O3: C 71.39; H 9.59. Found: C 71.29, H 9.57.

12. The X-Ray crystallography of a single crystal of 6 obtained by recrystallization from 20 % (v/v) EtOAc / hexane was carried out on a MAC Science MXC3k four-circle diffractometer with graphite-monochromatized MoKα radiation (λ=0.71073 Å) using the ω scan technique. A total of 3281 independent reflections was collected for compounds (6), and the structure was solved by direct methods. Crystal data: C15H24O3, F.W.=252.40, monoclinic, space group P21/n, a = 14.147(4) Å, b = 8.419(3) Å, c = 12.238(4) Å, β = 102.10(3)°, V = 1425.3(9) Å³, Z = 4, Dcalc = 1.176 g/cm³, μ(MoKα) = 0.075 cm⁻¹, R = 0.060, Rw = 0.069, 1793 observed reflections [I≥2σ(I)] used in the refinement.

Received, 28th May, 1998